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Globally networked risks and how
to respond
Dirk Helbing1,2

Today’s strongly connected, global networks have produced highly interdependent systems that we do not understand
and cannot control well. These systems are vulnerable to failure at all scales, posing serious threats to society, even when
external shocks are absent. As the complexity and interaction strengths in our networked world increase, man-made
systems can become unstable, creating uncontrollable situations even when decision-makers are well-skilled, have all
data and technology at their disposal, and do their best. To make these systems manageable, a fundamental redesign is
needed. A ‘Global Systems Science’ might create the required knowledge and paradigm shift in thinking.

G lobalization and technological revolutions are changing our pla-
net. Today we have a worldwide exchange of people, goods,
money, information, and ideas, which has produced many new

opportunities, services and benefits for humanity. At the same time,
however, the underlying networks have created pathways along which
dangerous and damaging events can spread rapidly and globally. This has
increased systemic risks1 (see Box 1). The related societal costs are huge.

When analysing today’s environmental, health and financial systems
or our supply chains and information and communication systems, one
finds that these systems have become vulnerable on a planetary scale.
They are challenged by the disruptive influences of global warming,
disease outbreaks, food (distribution) shortages, financial crashes, heavy
solar storms, organized (cyber-)crime, or cyberwar. Our world is already
facing some of the consequences: global problems such as fiscal and
economic crises, global migration, and an explosive mix of incompatible
interests and cultures, coming along with social unrests, international
and civil wars, and global terrorism.

In this Perspective, I argue that systemic failures and extreme events are
consequences of the highly interconnected systems and networked risks
humans have created. When networks are interdependent2,3, this makes
them even more vulnerable to abrupt failures4–6. Such interdependencies
in our ‘‘hyper-connected world’’1 establish ‘‘hyper-risks’’ (see Fig. 1). For
example, today’s quick spreading of emergent epidemics is largely a result
of global air traffic, and may have serious impacts on our global health,
social and economic systems6–9. I also argue that initially beneficial
trends such as globalization, increasing network densities, sparse use of
resources, higher complexity, and an acceleration of institutional decision
processes may ultimately push our anthropogenic (man-made or human-
influenced) systems10 towards systemic instability—a state in which things
will inevitably get out of control sooner or later.

Many disasters in anthropogenic systems should not be seen as ‘bad luck’,
but as the results of inappropriate interactions and institutional settings. Even
worse, they are often the consequences of a wrong understanding due to the
counter-intuitive nature of the underlying system behaviour. Hence, conven-
tional thinking can cause fateful decisions and the repetition of previous
mistakes. This calls for a paradigm shift in thinking: systemic instabilities
can be understood by a change in perspective from a component-oriented to
an interaction- and network-oriented view. This also implies a fundamental
change in the design and management of complex dynamical systems.

The FuturICT community11 (see http://www.futurict.eu), which involves
thousands of scientists worldwide, is now engaged in establishing a

‘Global Systems Science’, in order to understand better our information
society with its close co-evolution of information and communication
technology (ICT) and society. This effort is allied with the ‘‘Earth system
science’’10 that now provides the prevailing approach to studying the
physics, chemistry and biology of our planet. Global Systems Science
wants to make the theory of complex systems applicable to the solution
of global-scale problems. It will take a massively data-driven approach
that builds on a serious collaboration between the natural, engineering,
and social sciences, aiming at a grand integration of knowledge. This
approach to real-life techno-socio-economic-environmental systems8 is
expected to enable new response strategies to a number of twenty-first
century challenges.
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BOX 1

Risk, systemic risk and hyper-risk
According to the standard ISO 31000 (2009; http://www.iso.org/iso/
catalogue_detail?csnumber543170), risk is defined as ‘‘effect of
uncertainty on objectives’’. It is often quantified as the probability of
occurrence of an (adverse) event, times its (negative) impact
(damage), but it should be kept in mind that risks might also create
positive impacts, such as opportunities for some stakeholders.

Compared to this, systemic risk is the risk of having not just
statistically independent failures, but interdependent, so-called
‘cascading’ failures in a network of N interconnected system
components. That is, systemic risks result from connections between
risks (‘networked risks’). In such cases, a localized initial failure
(‘perturbation’) could have disastrous effects and cause, in principle,
unbounded damage as N goes to infinity. For example, a large-scale
power blackout can hit millions of people. In economics, a systemic
risk could mean the possible collapse of a market or of the whole
financial system. The potential damage here is largely determined by
the size N of the networked system.

Even higher risks are implied by networks of networks4,5, that is, by
the coupling of different kinds of systems. In fact, new vulnerabilities
result from the increasing interdependencies between our energy,
food and water systems, global supply chains, communication and
financial systems, ecosystems and climate10. The World Economic
Forum has described this situation as a hyper-connected world1, and
we therefore refer to the associated risks as ‘hyper-risks’.
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What we know
Overview
Catastrophe theory12 suggests that disasters may result from disconti-
nuous transitions in response to gradual changes in parameters. Such
systemic shifts are expected to occur at certain ‘tipping points’ (that is,
critical parameter values) and lead to different system properties. The
theory of critical phenomena13 has shown that, at such tipping points,
power-law (or other heavily skewed) distributions of event sizes are
typical. They relate to cascade effects4,5,14–20, which may have any size.
Hence, ‘‘extreme events’’21 can be a result of the inherent system
dynamics rather than of unexpected external events. The theory of
self-organized criticality22 furthermore shows that certain systems (such
as piles of grains prone to avalanches) may be automatically driven
towards a critical tipping point. Other work has studied the error and
attack tolerance of networks23 and cascade effects in networks4,5,14–20,24,
where local failures of nodes or links may trigger overloads and con-
sequential failures of other nodes or links. Moreover, abrupt systemic
failures may result from interdependencies between networks4–6 or
other mechanisms25,26.

Surprising behaviour due to complexity
Current anthropogenic systems show an increase of structural, dynamic,
functional and algorithmic complexity. This poses challenges for their
design, operation, reliability and efficiency. Here I will focus on complex

dynamical systems—those that cannot be understood by the sum of
their components’ properties, in contrast to loosely coupled systems.
The following typical features result from the nonlinear interactions in
complex systems27,28. (1) Rather than having one equilibrium solution,
the system might show numerous different behaviours, depending on
the respective initial conditions. (2) Complex dynamical systems may
seem uncontrollable. In particular, opportunities for external or top-
down control are very limited29. (3) Self-organization and strong corre-
lations dominate the system behaviour. (4) The (emergent) properties of
complex dynamical systems are often surprising and counter-intuitive30.

Furthermore, the combination of nonlinear interactions, network
effects, delayed response and randomness may cause a sensitivity to
small changes, unique path dependencies, and strong correlations, all
of which are hard to understand, prepare for and manage. Each of these
factors is already difficult to imagine, but this applies even more to their
combination.

For example, fundamental changes in the system outcome—such as
non-cooperative behaviour rather than cooperation among agents—can
result from seemingly small changes in the nature of the components or
their mode of interaction (see Fig. 2). Such small changes may be inter-
actions that take place on particular networks rather than on regular or
random networks, interactions or components that are spatially varying
rather than homogeneous, or which are subject to random ‘noise’ rather
than behaving deterministically31,32.
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Figure 1 | Risks Interconnection
Map 2011 illustrating systemic
interdependencies in the hyper-
connected world we are living in.
Reprinted from ref. 82 with
permission of the WEF.
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Cascade effects due to strong interactions
Our society is entering a new era—the era of a global information
society, characterized by increasing interdependency, interconnectivity
and complexity, and a life in which the real and digital world can no
longer be separated (see Box 2). However, as interactions between com-
ponents become ‘strong’, the behaviour of system components may
seriously alter or impair the functionality or operation of other compo-
nents. Typical properties of strongly coupled systems in the above-
defined sense are: (1) Dynamical changes tend to be fast, potentially
outstripping the rate at which one can learn about the characteristic
system behaviour, or at which humans can react. (2) One event can
trigger further events, thereby creating amplification and cascade
effects4,5,14–20, which implies a large vulnerability to perturbations, varia-
tions or random failures. Cascade effects come along with highly corre-
lated transitions of many system components or variables from a stable
to an unstable state, thereby driving the system out of equilibrium. (3)
Extreme events tend to occur more often than expected for normally
distributed event sizes17,21.

Probabilistic cascade effects in real-life systems are often hard to
identify, understand and map. Rather than deterministic one-to-one
relationships between ‘causes’ and ‘effects’, there are many possible paths
of events (see Fig. 3), and effects may occur with obfuscating delays.

Systemic instabilities challenge our intuition
Why are attempts to control strongly coupled, complex systems so often
unsuccessful? Systemic failures may occur even if everybody involved is
highly skilled, highly motivated and behaving properly. I shall illustrate
this with two examples.

Crowd disasters
Crowd disasters constitute an eye-opening example of the eventual
failure of control in a complex system. Even if nobody wants to harm
anybody else, people may be fatally injured. A detailed analysis reveals
amplifying feedback effects that cause a systemic instability33,34. The
interaction strength increases with the crowd density, as people come
closer together. When the density becomes too high, inadvertent contact
forces are transferred from one body to another and add up. The result-
ing forces vary significantly in direction and size, pushing people
around, and creating a phenomenon called ‘crowd quake’. Turbulent
waves cause people to stumble, and others fall over them in an often fatal
domino effect. If people do not manage to get back on their feet quickly
enough, they are likely to suffocate. In many cases, the instability is
created not by foolish or malicious individual actions, but by the
unavoidable amplification of small fluctuations above a critical density
threshold. Consequently, crowd disasters cannot simply be evaded by
policing, aimed at imposing ‘better behaviour’. Some kinds of crowd
control might even worsen the situation34.

Financial meltdown
Almost a decade ago, the investor Warren Buffett warned that massive
trade in financial derivatives would create mega-catastrophic risks for the
economy. In the same context, he spoke of an investment ‘‘time bomb’’ and
of financial derivatives as ‘‘weapons of mass destruction’’ (see http://news.
bbc.co.uk/2/hi/2817995.stm, accessed 1 June 2012). Five years later, the
financial bubble imploded and destroyed trillions of stock value. During
this time, the overall volume of credit default swaps and other financial
derivatives had grown to several times the world gross domestic product.

But what exactly caused the collapse? In response to the question by
the Queen of England of why nobody had foreseen the financial crisis,
the British Academy concluded: ‘‘Everyone seemed to be doing their
own job properly on its own merit. And according to standard measures
of success, they were often doing it well. The failure was to see how
collectively this added up to a series of interconnected imbalances...
Individual risks may rightly have been viewed as small, but the risk to
the system as a whole was vast.’’ (See http://www.britac.ac.uk/templates/
asset-relay.cfm?frmAssetFileID58285, accessed 1 June 2012.) For example,

while risk diversification in a banking system is aimed at minimizing risks, it
can create systemic risks when the network density becomes too high20.

Drivers of systemic instabilities
Table 1 lists common drivers of systemic instabilities32, and what makes
the corresponding system behaviours difficult to understand. Current
global trends promote several of these drivers. Although they often have
desirable effects in the beginning, they may destabilize anthropogenic
systems over time. Such drivers are, for example: (1) increasing system
sizes, (2) reduced redundancies due to attempts to save resources
(implying a loss of safety margins), (3) denser networks (creating
increasing interdependencies between critical parts of the network, see
Figs 2 and 4), and (4) a high pace of innovation35 (producing uncertain-
ties or ‘unknown unknowns’). Could these developments create a ‘‘glo-
bal time bomb’’? (See Box 3.)

Knowledge gaps
Not well behaved
The combination of complex interactions with strong couplings can lead
to surprising, potentially dangerous system behaviours17,30, which are
barely understood. At present, most of the scientific understanding of
large networks is restricted to cases of special, sparse, or static networks.
However, dynamically changing, strongly coupled, highly interconnected
and densely populated complex systems are fundamentally different36.
The number of possible system behaviours and proper management
strategies, when regular interaction networks are replaced by irregular
ones, is overwhelming18. In other words, there is no standard solution for
complex systems, and ‘the devil is in the detail’.
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Figure 2 | Spreading and erosion of cooperation in a prisoner’s dilemma
game. The computer simulations assume the payoff parameters T 5 7, R 5 6,
P 5 2, and S 5 1 and include success-driven migration32. Although cooperation
would be profitable to everyone, non-cooperators can achieve a higher payoff
than cooperators, which may destabilize cooperation. The graph shows the
fraction of cooperative agents, averaged over 100 simulations, as a function of
the connection density (actual number of network links divided by the
maximum number of links when all nodes are connected to all others). Initially,
an increasing link density enhances cooperation, but as it passes a certain
threshold, cooperation erodes. (See http://vimeo.com/53876434 for a related
movie.) The computer simulations are based on a circular network with 100
nodes, each connected with the four nearest neighbours. n links are added
randomly. 50 nodes are occupied by agents. The inset shows a ‘snapshot’ of the
system: blue circles represent cooperation, red circles non-cooperative
behaviour, and black dots empty sites. Initially, all agents are non-cooperative.
Their network locations and behaviours (cooperation or defection) are updated
in a random sequential way in 4 steps: (1) The agent plays two-person
prisoner’s dilemma games with its direct neighbours in the network. (2) After
the interaction, the agent moves with probability 0.5 up to 4 steps along existing
links to the empty node that gives the highest payoff in a fictitious play step,
assuming that noone changes the behaviour. (3) The agent imitates the
behaviour of the neighbour who got the highest payoff in step 1 (if higher than
the agent’s own payoff). (4) The behaviour is spontaneously changed with a
mutation rate of 0.1.
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Moreover, most existing theories do not provide much practical advice
on how to respond to actual global risks, crises and disasters, and empir-
ically based risk-mitigation strategies often remain qualitative37–42. Most
scientific studies make idealized assumptions such as homogeneous com-
ponents, linear, weak or deterministic interactions, optimal and independ-
ent behaviours, or other favourable features that make systems well-behaved
(smooth dependencies, convex sets, and so on). Real-life systems, in con-
trast, are characterized by heterogeneous components, irregular interaction
networks, nonlinear interactions, probabilistic behaviours, interdependent
decisions, and networks of networks. These differences can change the
resulting system behaviour fundamentally and dramatically and in unpre-
dictable ways. That is, real-world systems are often not well-behaved.

Behavioural rules may change
Many existing risk models also neglect the special features of social
systems, for example, the importance of a feedback of the emergent
macro-level dynamics on the micro-level behaviour of the system com-
ponents or on specific information input (see Box 4). Now, a single video
or tweet may cause deadly social unrest on the other side of the globe.
Such changes of the microdynamics may also change the failure pro-
babilities of system components.

For example, consider a case in which interdependent system com-
ponents may fail or not with certain probabilities, and where local
damage increases the likelihood of further damage. As a consequence,
the bigger a failure cascade, the higher the probability that it might grow
larger. This establishes the possibility of global catastrophic risks (see

Fig. 4), which cannot be reasonably insured against. The decreasing capa-
city of a socio-economic system to recover as a cascade failure progresses
(thereby eliminating valuable resources needed for recovery) calls for a
strong effort to stop cascades right at the beginning, when the damage is
still small and the problem may not even be perceived as threatening.
Ignoring this important point may cause costly and avoidable damage.

Fundamental and man-made uncertainty
Systems involving uncertainty, where the probability of particular
events (for example, the occurrence of damage of a certain size) cannot
be specified, are probably the least understood. Uncertainty may be a
result of limitations of calibration procedures or lack of data. However, it
may also have a fundamental origin. Let us assume a system of systems,
in which the output variables of one system are input variables of another
one. Let us further assume that the first system is composed of well-
behaved components, whose variables are normally distributed around
their equilibrium state. Connecting them strongly may nevertheless cause
cascade effects and power-law-distributed output variables13. If the expo-
nent of the related cumulative distribution function is between 22 and
21, the standard deviation is not defined, and if it is between 21 and 0,
not even the mean value exists. Hence, the input variables of the second
system could have any value, and the damage in the second system
depends on the actual, unpredictable values of the input variables.
Then, even if one had all the data in the world, it would be impossible
to predict or control the outcome. Under such conditions it is not possible
to protect the system from catastrophic failure. Such problems must and
can only be solved by a proper (re)design of the system and suitable
management principles, as discussed in the following.

Some design and operation principles
Managing complexity using self-organization
When systems reach a certain size or level of complexity, algorithmic
constraints often prohibit efficient top-down management by real-time
optimization. However, ‘‘guided self-organisation’’32,43,44 is a promising
alternative way of managing complex dynamical systems, in a decen-
tralized, bottom-up way. The underlying idea is to use, rather than fight,
the system-immanent tendency of complex systems to self-organize and
thereby create a stable, ordered state. For this, it is important to have the

BOX 2

Global information and
communication systems
One vulnerable system deserving particular attention is our global
network of information and communication technologies (ICT)11.
Although these technologies will be central to the solution of global
challenges, they are also part of the problem and raise fundamental
ethical issues, for example, how to ensure the self-determined use of
personal data. New ‘cyber-risks’ arise from the fact that we are now
enormously dependent on reliable information and communication
systems.This includes threats to individuals (suchasprivacy intrusion,
identity theft or manipulation by personalized information), to
companies (suchas cybercrime), and to societies (suchas cyberwaror
totalitarian control).

Our global ICT system is now the biggest artefact ever created,
encompassing billions of diverse components (computers,
smartphones, factories, vehicles and so on). The digital and real world
cannot be divided any more; they form a single interweaved system. In
this new ‘‘cybersocial world’’, digital information drives real events. The
techno-socio-economic implications of all this arebarely understood11.
The extreme speed of these systems, their hyper-connectivity, large
complexity, and massive data volumes produced are often seen as
problems. Moreover, the components increasingly make autonomous
decisions. For example, supercomputers are now performing the
majority of financial transactions. The ‘flash crash’ of 6 May 2010
illustrates the unexpected systemic behaviour that can result (http://
en.wikipedia.org/wiki/2010_Flash_Crash, accessed 29 July 2012):
within minutes, nearly $1 trillion in market value disappeared before
the financial markets recovered again. Such computer systems can be
considered to be ‘artificial social systems’, as they learn from
information about their environment, develop expectations about the
future, and decide, interact and communicate autonomously. To
design these systems properly, ensure a suitable response to human
needs, and avoid problems such as co-ordination failures, breakdowns
of cooperation, conflict, (cyber-)crime or (cyber-)war, we need a better,
fundamental understanding of socially interactive systems.

Possible paths Realised paths

Figure 3 | Illustration of probabilistic cascade effects in systems with
networked risks. The orange and blue paths show that the same cause can have
different effects, depending on the respective random realization. The blue and
red paths show that different causes can have the same effect. The
understanding of cascade effects requires knowledge of at least the following
three contributing factors: the interactions in the system, the context (such as
institutional or boundary conditions), and in many cases, but not necessarily so,
a triggering event (i.e. randomness may determine the temporal evolution of
the system). While the exact timing of the triggering event is often not
predictable, the post-trigger dynamics might be foreseeable to a certain extent
(in a probabilistic sense). When system components behave randomly, a
cascade effect might start anywhere, but the likelihood to originate at a weak
part of the system is higher (e.g. traffic jams mostly start at known bottlenecks,
but not always).
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right kinds of interactions, adaptive feedback mechanisms, and insti-
tutional settings. By establishing proper ‘rules of the game’, within which
the system components can self-organize, including mechanisms ensur-
ing rule compliance, top-down and bottom-up principles can be com-
bined and inefficient micro-management can be avoided. To overcome
suboptimal solutions and systemic instabilities, the interaction rules or
institutional settings may have to be modified. Symmetrical interactions,
for example, can often promote a well-balanced situation and an evolu-
tion to the optimal system state32.

Traffic light control is a good example to illustrate the ongoing paradigm
shift in managing complexity. Classical control is based on the principle of
a ‘benevolent dictator’: a traffic control centre collects information from the
city and tries to impose an optimal traffic light control. But because the
optimization problem is too demanding for real-time optimization, the
control scheme is adjusted for the typical traffic flows on a certain day and
time. However, this control is not optimal for the actual situation owing
to the large variability in the arrival rates of vehicles.

Significantly smaller and more predictable travel times can be reached
using a flexible ‘‘self-control’’ of traffic flows45. This is based on a suitable
real-time response to a short-term anticipation of vehicle flows, thereby
coordinating neighbouring intersections. Decentralized principles of
managing complexity are also used in information and communication
systems46, and they are becoming a trend in energy production (‘‘smart
grids’’47). Similar self-control principles could be applied to logistic and
production systems, or even to administrative processes and governance.

Coping with networked risks
To cope with hyper-risks, it is necessary to develop risk competence and
to prepare and exercise contingency plans for all sorts of possible failure
cascades4,5,14–20. The aim is to attain a resilient (‘forgiving’) system design
and operation48,49.

An important principle to remember is to have at least one backup
system that runs in parallel to the primary system and ensures a safe
fallback level. Note that a backup system should be operated and
designed according to different principles in order to avoid a failure of
both systems for the same reasons. Diversity may not only increase
systemic resilience (that is, the ability to absorb shocks or recover from
them), it can also promote systemic adaptability and innovation43.
Furthermore, diversity makes it less likely that all system components
fail at the same time. Consequently, early failures of weak system com-
ponents (critical fluctuations) will create early warning signals of an
impending systemic instability50.

An additional principle of reducing hyper-risks is the limitation of
system size, to establish upper bounds to the possible scale of disaster.
Such a limitation might also be established in a dynamical way, if real-
time feedback allows one to isolate affected parts of the system before
others are damaged by cascade effects. If a sufficiently rapid dynamic
decoupling cannot be ensured, one can build weak components (break-
ing points) into the system, preferably in places where damage would be
comparatively small. For example, fuses in electrical circuits serve to
avoid large-scale damage of local overloads. Similarly, engineers have
learned to build crush zones in cars to protect humans during accidents.

A further principle would be to incorporate mechanisms producing a
manageable state. For example, if the system dynamics unfolds so
rapidly that there is a danger of losing control, one could slow it down
by introducing frictional effects (such as a financial transaction fee that
kicks in when financial markets drop).

Also note that dynamical processes in a system can desynchronize51, if
the control variables change too quickly relative to the timescale on
which the governed components can adjust. For example, stable hier-
archical systems typically change slowly on the top and much quicker on
the lower levels. If the influence of the top on the bottom levels becomes

Table 1 | Drivers and examples of systemic instabilities
Driver/factor Description/phenomenon Field/modelling approach Examples Surprising system behaviour

Threshold effect Unexpected transition, systemic
shift

Bifurcation73 and catastrophe
theory12, explosive
percolation25, dragon kings26

Revolutions (for example, the
Arab Spring, breakdown of
former GDR, now East Germany)

Sudden failure of continuous
improvement attempts

Randomness in a
strongly coupled system

Strong correlations, mean-field
approximation (‘representative
agent model’) does not work

Statistical physics, theory of
critical phenomena13

Self-organized criticality22,
earthquakes74, stock market
variations, evolutionary jumps,
floods, sunspots

Extreme events21, outcome can
be opposite of mean-field
prediction

Positive feedback Dynamic instability and
amplification effect, equilibrium
or stationary state cannot be
maintained

(Linear) stability analysis,
eigenvalues theory, sensitivity
analysis

Tragedy of the commons31

(tax evasion, over-fishing,
exploitation of environment,
global warming, free-riding,
misuse of social benefits)

Bubbles and crashes,
cooperation breaks down,
although it would be better for
everyone

Wrong timing (mismatch
of adjustment processes)

Over-reaction, growing
oscillations, loss of
synchronization51

(Linear) stability analysis,
eigenvalue theory

Phantom traffic jams75, blackout
of electrical power grids76

Breakdown of flow despite
sufficient capacity

Strong interaction,
contagion

Domino and cascade effects,
avalanches

Network analysis, agent-based
models, bundle-fibre model24

Financial crisis, epidemic
spreading8

It may be impossible to
enumerate the risk

Complex structure Perturbations in one network
affect another one

Theory of interdependent
networks4

Coupled electricity and
communication networks,
impact of natural disasters
on critical infrastructures

Possibility of sudden failure
(rather than gradual
deterioration of performance)

Complex dynamics Self-organized dynamics,
emergence of new systemic
properties

Nonlinear dynamics, chaos
theory77, complexity theory28

Crowd turbulence33 Systemic properties differ from
the component properties

Complex function Sensitivity, opaqueness,
scientific unknowns

Computational and
experimental testing

Information and communication
systems

Unexpected system properties
and failures

Complex control Time required for computational
solution explodes with system
size, delayed or non-optimal
solutions

Cybernetics78, heuristics Traffic light control45,
production, politics

Optimal solution unreachable,
slower-is-faster effect75

Optimization Orientation at state of high
performance; loss of reserves
and redundancies

Operations research Throughput optimization,
portfolio optimization

Capacity drop75, systemic risks
created by insurance against
risks79

Competition Incompatible preferences or
goals

Economics, political sciences Conflict72 Market failure, minority may
win

Innovation Introduction of new system
components, designs or
properties; structural instability80

Evolutionary models, genetic
algorithms68

Financial derivatives, new
products, new procedures
and new species

Point change can mess up the
whole system, finite time
singularity35,81
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too strong, this may impair the functionality and self-organization of the
hierarchical structure32.

Last but not least, reducing connectivity may serve to decrease the
coupling strength in the system. This implies a change from a dense to
a sparser network, which can reduce contagious spreading effects. In fact,
sparse networks seem to be characteristic for ecological systems52.

As logical as the above safety principles may sound, these precautions
have often been neglected in the design and operation of strongly
coupled, complex systems such as the world financial system20,53,54.

What is ahead
Despite all our knowledge, much work is still ahead of us. For example,
the current financial crisis shows that much of our theoretical know-
ledge has not yet found its way into real-world policies, as it should.

Economic crises
Two main pillars of mainstream economics are the equilibrium paradigm
and the representative agent approach. According to the equilibrium para-
digm, economies are viewed as systems that tend to evolve towards an
equilibrium state. Bubbles and crashes should not happen and, hence,
would not require any precautions54. Sudden changes would be caused
exclusively by external shocks. However, it does not seem to be widely
recognized that interactions between system elements can cause amplifying
cascade effects even if all components relax to their equilibrium state55,56.

Representative agent models, which assume that companies act in the
way a representative (average) individual would optimally decide, are
more general and allow one to describe dynamical processes. However,
such models cannot capture processes well if random events, the diver-
sity of system components, the history of the system or correlations
between variables matter a lot. It can even happen that representative

agent models make predictions opposite to those of agent-based com-
puter simulations assuming the very same interaction rules32 (see Fig. 2).

Paradigm shift ahead
Both equilibrium and representative agent models are fundamen-
tally incompatible with probabilistic cascade effects—they are different
classes of models. Cascade effects cause a system to leave its previous
(equilibrium) state, and there is also no representative dynamics, because
different possible paths of events may look very different (see Fig. 3).
Considering furthermore that the spread of innovations and products
also involves cascade effects57,58, it seems that cascade effects are even the
rule rather than the exception in today’s economy. This calls for a new
economic thinking. Many currently applied theories are based on the
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Figure 4 | Cascade spreading is increasingly hard to recover from as failure
progresses. The simulation model mimics spatial epidemic spreading with air
traffic and healing costs in a two-dimensional 50 3 50 grid with periodic
boundary conditions and random shortcut links. The colourful inset depicts an
early snapshot of the simulation with N 5 2,500 nodes. Red nodes are infected,
green nodes are healthy. Shortcut links are shown in blue. The connectivity-
dependent graph shows the mean value and standard deviation of the fraction
i(t)/N of infected nodes over 50 simulation runs. Most nodes have four direct
neighbours, but a few of them possess an additional directed random
connection to a distant node. The spontaneous infection rate is s 5 0.001 per
time step; the infection rate by an infected neighbouring node is P 5 0.08.
Newly infected nodes may infect others or may recover from the next time step
onwards. Recovery occurs with a rate q 5 0.4, if there is enough budget b . c to
bear the healing costs c 5 80. The budget needed for recovery is created by the
number of healthy nodes h(t). Hence, if r(t) nodes are recovering at time t, the
budget changes according to b(t 1 1) 5 b(t) 1 h(t) 2 cr(t). As soon as the
budget is used up, the infection spreads explosively. (See also the movie at
http://vimeo.com/53872893.)

BOX 3

Have humans created a ‘global
time bomb’?
For a long time, crowd disasters and financial crashes seemed to be
puzzling, unrelated, ‘God-given’ phenomena one simply had to live
with. However, it is possible to grasp the mechanisms that cause
complex systems to get out of control. Amplification effects can result
and promote failure cascades, when the interactions of system
components become stronger than the frictional effects or when the
damaging impact of impaired system components on other
components occurs faster than the recovery to their normal state.

For certain kinds of interaction networks, the similarity of related
cascade effects with those of chain reactions in nuclear fission is
disturbing (see Box 3 Figure). It is known that such processes are
difficult to control. Catastrophic damage is a realistic scenario. Given
the similarity of the cascading mechanisms, is it possible that our
worldwideanthropogenic system will get out of control sooner or later?
In other words, have humans unintentionally created something like a
‘‘global time bomb’’?

If so, what kinds of global catastrophic scenarios might humans in
complex societies81 face? A collapse of the global information and
communication systems or of the world economy? Global
pandemics6–9? Unsustainable growth, demographic or environmental
change? A global food or energy crisis? The large-scale spreading of
toxic substances? A cultural clash83? Another global-scale conflict84,85?
Or, more likely, a combination of several of these contagious
phenomena (the ‘‘perfect storm’’1)? When analysing such global risks,
one should bear in mind that the speed of destructive cascade effects
might be slow, and the process may not look like an explosion.
Nevertheless, the process can be hard to stop. For example, the
dynamics underlying crowd disasters is slow, but deadly.

Possible paths

Realised paths

Box 3 Figure | Illustration of the principle of a ‘time bomb’. A single,
local perturbation of a node may cause large-scale damage through a
cascade effect, similar to chain reactions in nuclear fission.
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assumption that statistically independent, optimal decisions are made.
Under such idealized conditions one can show that financial markets are
efficient, that herding effects will not occur, and that unregulated, self-
regarding behaviour can maximize system performance, benefiting
everyone. Some of these paradigms are centuries old yet still applied by
policy-makers. However, such concepts must be questioned in a world
where economic decisions are strongly coupled and cascade effects are
frequent54,59.

Global Systems Science
For a long time, humans have considered systemic failures to originate from
‘outside the system’, because it has been difficult to understand how they
could come about otherwise. However, many disasters in anthropogenic
systems result from a wrong way of thinking and, consequently, from inap-
propriate organization and systems design. For example, we often apply
theories for well-behaved systems to systems that are not well behaved.

Given that many twenty-first-century problems involve socio-
economic challenges, we need to develop a science of economic systems
that is consistent with our knowledge of complex systems. A massive
interdisciplinary research effort is indispensable to accelerate science and
innovation so that our understanding and capabilities can keep up with
the pace at which our world is changing (‘innovation acceleration’11).

In the following, I use the term Global Systems Science to emphasize
that integrating knowledge from the natural, engineering and social
sciences and applying it to real-life systems is a major challenge that
goes beyond any currently existing discipline. There are still many
unsolved problems regarding the interplay between structure, dynamics
and functional properties of complex systems. A good overview of global
interdependencies between different kinds of networks is lacking as well.
The establishment of a Global Systems Science should fill these know-
ledge gaps, particularly regarding the role of human and social factors.

Progress must be made in computational social science60, for example
by performing agent-based computer simulations32,61–63 of learning agents
with cognitive abilities and evolving properties. We also require the close
integration of theoretical and computational with empirical and experi-
mental efforts, including interactive multi-player serious games64,65, labor-
atory and web experiments, and the mining of large-scale activity data11.

We furthermore lack good methods of calculating networked
risks. Modern financial derivatives package many risks together. If the
correlations between the components’ risks are stable in time, copula
methodology66 offers a reasonable modelling framework. However, the
correlations strongly depend on the state of the global financial system67.
Therefore, we still need to learn how realistically to calculate the inter-
dependence and propagation of risks in a network, how to absorb them,
and how to calibrate the models (see Box 5). This requires the integ-
ration of probability calculus, network theory and complexity science
with large-scale data mining.

Making progress towards a better understanding of complex systems
and systemic risks also depends crucially on the collection of ‘big data’
(massive amounts of data) and the development of powerful machine
learning techniques that allow one to develop and validate realistic

BOX 5

Beyond current risk analysis
State-of-the-art risk analysis88 still seems to have a number of
shortcomings. (1) Estimates for the probability distribution and
parameters describing rare events, including the variability of such
parameters over time, are often poor. (2) The likelihood of
coincidences of multiple unfortunate, rare events is often
underestimated (but there is a huge number of possible
coincidences). (3) Classical fault tree and event tree analyses37 (see
also http://en.wikipedia.org/wiki/Fault tree analysis and http://
en.wikipedia.org/wiki/Event tree, both accessed 18 November 2012)
do not sufficiently consider feedback loops. (4) The combination of
probabilistic failure analysis with complex dynamics is still
uncommon, even though it is important to understand amplification
effects and systemic instabilities. (5) The relevance of human factors,
such as negligence, irresponsible or irrational behaviour, greed, fear,
revenge, perception bias, or human error is often underestimated30,41.
(6) Social factors, including the value of social capital, are typically not
considered. (7) Common assumptions underlyingestablished ways of
thinking are not questioned enough, and attempts to identify
uncertainties or ‘unknown unknowns’ are often insufficient. Some of
theworst disasters have happenedbecause of a failure to imagine that
they were possible42, and thus to guard against them. (8) Economic,
political and personal incentives are not sufficiently analysed as
drivers of risks. Many risks can be revealed by looking for stakeholders
whocouldpotentiallyprofit fromrisk-taking, negligenceor crises. Risk-
seeking strategies that attempt to create new opportunities via
systemic change are expected mainly under conditions of uncertainty,
because these tend to be characterized by controversial debates and,
therefore, under-regulation.

To reach better risk assessment and risk reduction we need
transparency, accountability, responsibility and awareness of
individual and institutional decision-makers11,36. Modern governance
sometimes dilutes responsibility so much that nobody can be held
responsible anymore and catastrophic risks may be a consequence.
The financial crisis seems to be a good example. Part of the problem
appears to be that credit default swaps and other financial derivatives
are modern financial insurance instruments, which transfer risks from
the individuals or institutions causing them to others, thereby
encouraging excessive risk taking. It might therefore be necessary to
establish a principle of collective responsibility, by which individuals or
institutions share responsibility for incurred damage in proportion to
their previous (and subsequent) gains.

BOX 4

Social factors and social capital
Many twenty-first-century challenges have a social component and
cannot be solved by technology alone86. Socially interactive systems,
be it social or economic systems, artificial societies, or the hybrid
system made up of our virtual and real worlds, are characterized by a
number of special features, which imply additional risks: The
components (for example, individuals) take autonomous decisions
based on (uncertain) future expectations. They produce and respond
to complex and often ambiguous information. They have cognitive
complexity. They have individual learning histories and therefore
different, subjective views of reality. Individual preferences and
intentions are diverse, and imply conflicts of interest. The behaviour
may depend on the context in a sensitive way. For example, the way
people behave and interact may change in response to the emergent
social dynamics on the macro scale. This also implies the ability to
innovate, which may create surprising outcomes and ‘unknown
unknowns’ through new kinds of interactions. Furthermore, social
network interactions can create social capital43,87 such as trust,
solidarity, reliability, happiness, social values, norms and culture.

To assess systemic risks fully, a better understanding of social
capital is crucial. Social capital is important for economic value
generation, social well-being, and societal resilience, but it may be
damaged or exploited, like our environment. Therefore, humans need
to learn how to quantify and protect social capital36. A warning
example is the loss of trillions of dollars in the stock markets during the
financial crisis, which was largely caused by a loss of trust. It is
important to stress that risk insurances today do not considerdamage
to social capital. However, it is known that large-scale disasters have a
disproportionate public impact, which is related to the fact that they
destroy social capital. By neglecting social capital in risk assessment,
we are taking higher risks than we would rationally do.
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explanatory models of interdependent systems. The increasing availabi-
lity of detailed activity data and of cheap, ubiquitous sensing technolo-
gies will enable previously unimaginable breakthroughs.

Finally, given that it can be dangerous to introduce new kinds of
components, interactions or interdependencies into our global systems,
a science of integrative systems design is needed. It will have to elaborate
suitable interaction rules and system architectures that ensure not only
system components to work well, but also favourable systemic interac-
tions and outcomes. A particular challenge is to design value-sensitive
information systems and financial exchange systems that promote
awareness and responsible action11. How could we create open informa-
tion platforms that minimize misuse? How could we avoid privacy
intrusion and the manipulation of individuals? How could we enable
greater participation of citizens in social, economic and political affairs?

Finding tailored design and operation principles for complex, strongly
coupled systems is challenging. However, inspiration can be drawn from
ecological52, immunological68, and social systems32. Understanding the
principles that make socially interactive systems work well (or not) will
facilitate the invention of a whole range of socio-inspired design and
operation principles11. This includes reputation, trust, social norms, cul-
ture, social capital and collective intelligence, all of which could help to
counter cybercrime and to design a trustable future Internet.

New exploration instruments
To promote Global Systems Science with its strong focus on interactions
and global interdependencies, the FuturICT initiative proposes to build
new, open exploration instruments (‘socioscopes’), analogous to the
telescopes developed earlier to explore new continents and the universe.
One such instrument, called the ‘‘Planetary Nervous System’’11, would
process data reflecting the state and dynamics of our global techno-
socio-economic-environmental system. Internet data combined with
data collected by sensor networks could be used to measure the state
of our world in real time69. Such measurements should reflect not only
physical and environmental conditions, but also quantify the ‘‘social
footprint’’11, that is, the impact of human decisions and actions on our
socio-economic system. For example, it would be desirable to develop
better indices of social wellbeing than the gross domestic product per
capita, ones that consider environmental factors, health and human and
social capital (see Box 4 and http://www.stiglitz-sen-fitoussi.fr and http://
www.worldchanging.com/archives/010627.html). The Planetary Nervous
System would also increase collective awareness of possible problems and
opportunities, and thereby help us to avoid mistakes.

The data generated by the Planetary Nervous System could be used to
feed a ‘‘Living Earth Simulator’’11, which would simulate simplified, but
sufficiently realistic models of relevant aspects of our world. Similar to
weather forecasts, an increasingly accurate picture of our world and its
possible evolutions would be obtained over time as we learn to model
anthropogenic systems and human responses to information. Such
‘policy wind tunnels’ would help to analyse what-if scenarios, and to
identify strategic options and their possible implications. This would
provide a new tool with which political decision-makers, business leaders,
and citizens could gain a better, multi-perspective picture of difficult
matters.

Finally, a ‘‘Global Participatory Platform’’11 would make these new
instruments accessible to everybody and create an open ‘information
ecosystem’, which would include an interactive platform for crowd
sourcing and cooperative applications. The activity data generated there
would also allow one to determine statistical laws of human decision
making and collective action64. Furthermore, it would be conceivable to
create interactive virtual worlds65 in order to explore possible futures
(such as alternative designs of urban areas, financial architectures and
decision procedures).

Discussion
I have described how system components, even if their behaviour is
harmless and predictable when separated, can create unpredictable

and uncontrollable systemic risks when tightly coupled together.
Hence, an improper design or management of our global anthropogenic
system creates possibilities of catastrophic failures.

Today, many necessary safety precautions to protect ourselves from
human-made disasters are not taken owing to insufficient theoretical
understanding and, consequently, wrong policy decisions. It is danger-
ous to believe that crises and disasters in anthropogenic systems are
‘natural’, or accidents resulting from external disruptions. Another mis-
conception is that our complex systems could be well controlled or that
our socio-economic system would automatically fix itself.

Such ways of thinking impose huge risks on society. However, owing
to the systemic nature of man-made disasters, it is hard to blame any-
body for the damage. Therefore, classical self-adjustment and feedback
mechanisms will not ensure responsible action to avert possible disas-
ters. It also seems that present law cannot handle situations well, when
the problem does not lie in the behaviour of individuals or companies,
but in the interdependencies between them.

The increasing availability of ‘big data’ has raised the expectation that
we could make the world more predictable and controllable. Indeed,
real-time management may overcome instabilities caused by delayed
feedback or lack of information. However, there are important limita-
tions: too much data can make it difficult to separate reliable from
ambiguous or incorrect information, leading to misinformed decision-
making. Hence too much information may create a more opaque rather
than a more transparent picture.

If a country had all the computer power in the world and all the data,
would this allow a government to make the best decisions for everybody?
Not necessarily. The principle of a caring state (or benevolent dictator)
would not work, because the world is too complex to be optimized top-
down in real time. Decentralized coordination with affected (neighbour-
ing) system components can achieve better results, adapted to local
needs45. This means that a participatory approach, making use of local
resources, can be more successful. Such an approach is also more resi-
lient to perturbations.

For today’s anthropogenic system, predictions seem possible only
over short time periods and in a probabilistic sense. Having all the data
in the world would not allow one to forecast the future. Nevertheless,
one can determine under what conditions systems are prone to cascades
or not. Moreover, weak system components can be used to produce early
warning signals. If safety precautions are lacking, however, spontaneous
cascades might be unstoppable and become catastrophic. In other
words, predictability and controllability are a matter of proper systems
design and operation. It will be a twentyfirst-century challenge to learn
how to turn this into practical solutions and how to use the positive sides
of cascade effects. For example, cascades can produce a large-scale coor-
dination of traffic lights45 and vehicle flows70, or promote the spreading
of information and innovations57,58, of happiness71, social norms72, and
cooperation31,32,59. Taming cascade effects could even help to mobilize
the collective effort needed to address the challenges of the century
ahead.
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